首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   130篇
  免费   3篇
  国内免费   2篇
大气科学   2篇
地球物理   30篇
地质学   57篇
海洋学   27篇
天文学   15篇
综合类   1篇
自然地理   3篇
  2021年   2篇
  2019年   4篇
  2017年   1篇
  2016年   2篇
  2015年   2篇
  2014年   4篇
  2013年   3篇
  2012年   6篇
  2011年   3篇
  2010年   4篇
  2009年   4篇
  2008年   5篇
  2007年   4篇
  2006年   2篇
  2005年   5篇
  2004年   6篇
  2003年   6篇
  2002年   7篇
  2001年   7篇
  2000年   4篇
  1999年   4篇
  1998年   4篇
  1997年   3篇
  1996年   5篇
  1995年   4篇
  1994年   1篇
  1993年   5篇
  1992年   1篇
  1991年   4篇
  1990年   2篇
  1989年   2篇
  1988年   3篇
  1987年   3篇
  1986年   2篇
  1985年   1篇
  1984年   3篇
  1983年   2篇
  1980年   1篇
  1979年   1篇
  1974年   1篇
  1972年   2篇
排序方式: 共有135条查询结果,搜索用时 250 毫秒
11.
12.
Abstract In order to make geophysical and geological investigations of the Nojima Fault on Awaji Island, Japan, three boreholes measuring 1800 m, 800 m and 500 m deep were drilled into the fault zone. The fault is one of the seismic source faults of the 1995 Hyogo-ken Nanbu earthquake of M 7.2. A new multicomponent borehole instrument was installed at the bottom of the 800 m borehole and continuous observations of crustal strain and tilt have been made using this instrument since May 1996. A high-pressure water injection experiment within the 1800 m borehole was done in February and March 1997 to study the geophysical response, behavior, permeability, and other aspects of the fault zone. The injection site was located approximately 140 m horizontally and 800 m vertically from the instrument. Associated with the water injection, contraction of approximately 0.7 × 10−7 str (almost parallel to the fault) and tilt of approximately 1 × 10-7 rad in the sense of upheaval toward the injection site were observed. In addition to these controlled experiments, the strainmeter and tiltmeter also recorded daily variations. We interpret strain and tilt changes to be related to groundwater discharge and increased ultra-micro seismicity induced by the injected water.  相似文献   
13.
We obtain the viscous stirring and dynamical friction rates of planetesimals with a Rayleigh distribution of eccentricities and inclinations, using three-body orbital integration and the procedure described by Ohtsuki (1999, Icarus137, 152), who evaluated these rates for ring particles. We find that these rates based on orbital integrations agree quite well with the analytic results of Stewart and Ida (2000, Icarus 143, 28) in high-velocity cases. In low-velocity cases where Kepler shear dominates the relative velocity, however, the three-body calculations show significant deviation from the formulas of Stewart and Ida, who did not investigate the rates for low velocities in detail but just presented a simple interpolation formula between their high-velocity formula and the numerical results for circular orbits. We calculate evolution of root mean square eccentricities and inclinations using the above stirring rates based on orbital integrations, and find excellent agreement with N-body simulations for both one- and two-component systems, even in the low-velocity cases. We derive semi-analytic formulas for the stirring and dynamical friction rates based on our numerical results, and confirm that they reproduce the results of N-body simulations with sufficient accuracy. Using these formulas, we calculate equilibrium velocities of planetesimals with given size distributions. At a stage before the onset of runaway growth of large bodies, the velocity distribution calculated by our new formulas are found to agree quite well with those obtained by using the formulas of Stewart and Ida or Wetherill and Stewart (1993, Icarus106, 190). However, at later stages, we find that the inclinations of small collisional fragments calculated by our new formulas can be much smaller than those calculated by the previously obtained formulas, so that they are more easily accreted by larger bodies in our case. The results essentially support the previous results such as runaway growth of protoplanets, but they could enhance their growth rate by 10-30% after early runaway growth, where those fragments with low random velocities can significantly contribute to rapid growth of runaway bodies.  相似文献   
14.
15.
16.
The importance of the nitrogen source for phytoplankton growth in a highly eutrophic embayment, Dokai Bay, was investigated. The DIN concentration often exceeded 100 μM of which 40–70% was NH4 +. During two incubation experiments, the natural assemblage of mainly diatoms took up NH4 + instead of NO3 . The growth of two Skeletonema species isolated in Dokai Bay were significantly faster on NH4 + (1.86 and 1.27 div. d−1 respectively) than on NO3 (1.55 and 1.04 div. d−1 respectively). Our results indicated that these diatoms could grow faster by using NH4 + compared to NO3 in this eutrophic bay.  相似文献   
17.
The structure of silicate melts in the system Na2O·4SiO2 saturated with reduced C-O-H volatile components and of coexisting silicate-saturated C-O-H solutions has been determined in a hydrothermal diamond anvil cell (HDAC) by using confocal microRaman and FTIR spectroscopy as structural probes. The experiments were conducted in-situ with the melt and fluid at high temperature (up to 800 °C) and pressure (up to 1435 MPa). Redox conditions in the HDAC were controlled with the reaction, Mo + H2O = MoO+ H2, which is slightly more reducing than the Fe + H2O = FeO + H2 buffer at 800 °C and less.The dominant species in the fluid are CH4 + H2O together with minor amounts of molecular H2 and an undersaturated hydrocarbon species. In coexisting melt, CH3 - groups linked to the silicate melt structure via Si-O-CH3 bonding may dominate and possibly coexists with molecular CH4. The abundance ratio of CH3 - groups in melts relative to CH4 in fluids increases from 0.01 to 0.07 between 500 and 800 °C. Carbon-bearing species in melts were not detected at temperatures and pressures below 400 °C and 730 MPa, respectively. A schematic solution mechanism is, Si-O-Si + CH4?Si-O-CH3+H-O-Si. This mechanism causes depolymerization of silicate melts. Solution of reduced (C-O-H) components will, therefore, affect melt properties in a manner resembling dissolved H2O.  相似文献   
18.
Based on the analysis of observations from a 213-m tall meteorological tower at Tsukuba, Japan, we have investigated the favourable conditions for the predominant existence of large-scale turbulence structures in the near-neutral atmospheric boundary layer (ABL). From the wavelet variance spectrum for the streamwise velocity component ( $u$ ) measured by a sonic anemometer-thermometer at the highest level (200 m), large-scale structures (time-scale range of 100–300 s) predominantly exist under slightly unstable and close to neutral conditions. The emergence of large-scale structures also can be related to the diurnal evolution of the ABL. The large-scale structures play an important role in the overall flow structure of the lower boundary layer. For example, $u$ velocity components at the 200-m and 50-m levels show relatively high correlation with the existence of large-scale structures. Under slightly unstable (near-neutral) conditions, a low-speed region in advance of the high-speed structure shows a positive deviation of temperature and appears as the plume structure that is forced by buoyancy in the heated lower layer. In spite of the difference in buoyancy effects between the near-neutral and unstable cases, large-scale structures are frequently observed in both cases and the same vertical correlation of $u$ components is indicated. However, the vertical wind shear is smaller in the unstable cases. On the other hand, in near-neutral cases, the transport efficiency of momentum at the higher level and the flux contribution of sweep motions are larger than those in the unstable cases.  相似文献   
19.
Dacitic magma, a mixture of high-temperature (T) aphyric magma and low-T crystal-rich magma, was erupted during the 1991–1995 Mount Unzen eruptive cycle. Here, the crystallization processes of the low-T magma were examined on the basis of melt inclusion analysis and phase relationships. Variation in water content of the melt inclusions (5.1–7.2 wt% H2O) reflected the degassing history of the low-T magma ascending from deeper levels (250 MPa) to a shallow magma chamber (140 MPa). The ascent rate of the low-T magma decreased markedly towards the emplacement level as crystal content increased. Cooling of magma as well as degassing-induced undercooling drove crystallization. With the decreasing ascent rate, degassing-induced undercooling decreased in importance, and cooling became more instrumental in crystallization, causing local and rapid crystallization along the margin of the magma body. Some crystals contain scores of melt inclusions, whereas there are some crystals without any inclusions. This heterogeneous distribution suggests the variation in the crystallization rate within the magma body; it also suggests that cooling was dominant cause for melt entrapment. Numerical calculations of the cooling magma body suggest that cooling caused rapid crystal growth and enhanced melt entrapment once the magma became a crystal-rich mush with evolved interstitial melt. The rhyolitic composition of melt inclusions is consistent with this model.Editorial responsibility: H Shinohara  相似文献   
20.
Junko Kominami  Shigeru Ida 《Icarus》2004,167(2):231-243
We have performed N-body simulations on final accretion stage of terrestrial planets, including the eccentricity and inclination damping effect due to tidal interaction with a gas disk. We investigated the dependence on a depletion time scale of the disk, and the effect of secular perturbations by Jupiter and Saturn. In the final stage, terrestrial planets are formed through coagulation of protoplanets of about the size of Mars. They would collide and grow in a decaying gas disk. Kominami and Ida [Icarus 157 (2002) 43-56] showed that it is plausible that Earth-sized, low-eccentricity planets are formed in a mostly depleted gas disk. In this paper, we investigate the formation of planets in a decaying gas disk with various depletion time scales, assuming disk surface density of gas component decays exponentially with time scale of τgas. Fifteen protoplanets with are initially distributed in the terrestrial planet regions. We found that Earth-sized planets with low eccentricities are formed, independent of initial gas surface density, when the condition (τcross+τgrowth)/2?τgas?τcross is satisfied, where τcross is the time scale for initial protoplanets to start orbit crossing in a gas-free case and τgrowth is the time scale for Earth-sized planets to accrete during the orbit crossing stage. In the cases satisfying the above condition, the final masses and eccentricities of the largest planets are consistent with those of Earth and Venus. However, four or five protoplanets with the initial mass remain. In the final stage of terrestrial planetary formation, it is likely that Jupiter and Saturn have already been formed. When Jupiter and Saturn are included, their secular perturbations pump up eccentricities of protoplanets and tend to reduce the number of final planets in the terrestrial planet regions. However, we found that the reduction is not significant. The perturbations also shorten τcross. If the eccentricities of Jupiter and Saturn are comparable to or larger than present values (∼0.05), τcross become too short to satisfy the above condition. As a result, eccentricities of the planets cannot be damped to the observed value of Earth and Venus. Hence, for the formation of terrestrial planets, it is preferable that the secular perturbations from Jupiter and Saturn do not have significant effect upon the evolution. Such situation may be reproduced by Jupiter and Saturn not being fully grown, or their eccentricities being smaller than the present values during the terrestrial planets' formation. However, in such cases, we need some other mechanism to eliminate the problem that numerous Mars-sized planets remain uncollided.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号